陈海滨
浏览量: 更新日期:2016-04-13
个人简介
1. 陈海滨,1982年3月16日出生,讲师,香港理工大学博士。
研究方向:非线性最优化理论与算法,张量优化,张量谱理论。
主讲研究生及本科生课程: 《线性规划》、《非线性最优化理论与方法》、《高等数学》、《线性代数》。
联系方式chenhaibin508@163.com, 或chenhaibin508@qfnu.edu.cn,电话:15953081834.
2. 学习工作经历:
2000-2004年:曲阜师范大学,数学科学学院,本科;
2004-2006年:哈尔滨工程大学,理学院,硕士研究生,导师:刘亚成;
2013.7-2016.7:香港理工大学,应用数学系,博士,导师:祁力群;
2006-2009年:曲阜师范大学,数学科学学院,讲师;
2010- 至今:曲阜师范大学,管理学院,讲师;
2017.1-2017.3:香港理工大学,访问学者(Research Associate);
2017.6-2017.7:香港理工大学,访问学者(Research Associate);
2018.1-2018.2:香港理工大学,访问学者 (Postdoctoral Fellow).
3. 项目与获奖情况
(1) 国家自然科学基金,平方和张量分解理论及应用(20161261),2017.1-2019.12,主持
(2) 山东省自然科学基金,一类结构张量分解理论及相关算法和应用(ZR2016AQ12),2016.12-2019.6, 主持;
(3) 中国博士后科研基金,大规模对称张量分解及应用(2017M622163),2017.11-2019.4, 主持;
(4) 2016年山东省高校优秀科研成果奖,张量优化问题的数值算法研究,二等奖(2/3)。
4.部分发表的论文(标记“*”为通信作者)
Zhang Kaili, Chen Haibin*, Zhao Pengfei, A Potential Reduction Method for Tensor Complementarity Problem. J. Ind. Manag. Optim., 2018, (accepted)
Chen Haibin, Qi Liqun, Song Yisheng, Column Sufficient Tensors and Tensor Complementarity Problems. Front. Math. China, 2018, (accepted)
Wang Xueyong, Chen Haibin, Wang Yiju, On the Solution Existence of Cauchy Tensor Variational Inequality Problems. Pacific Journal of Optimization. 2018, (accepted)
Wang Xueyong, Chen Haibin, Wang Yiju, Solution structures of tensor complementarity problem. Front. Math. China, 2018, (accepted)
Chen Haibin, Yannan Chen, Guoyin Li, Liqun Qi, A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numerical Linear Algebra with applications, 2018, 25(1): e2125. (DOI: 10.1002/nla.2125)
Chen Haibin, Zhenghai Huang, Liqun Qi, Copositive tensor detection and its applications in physics and hypergraphs. Comput Optim Appl, 2018, https://doi.org/10.1007/s10589-017-9938-1
Chen Haibin, Huang Zhenghai, Qi Liqun. Copositivity detection of tensors: theory and algorithm. J Optim Theory Appl, 2017, 174: 746–761
Chen Haibin, Wang Yiju, On computing minimal H-eigenvalue of sign-structured tensors. Front. Math. China, 2017, 12(6) (20): 1289-1302.
Chen Haibin, Li Guoyin, Qi Liqun, Further results on Cauchy tensors and Hankel tensors. Applied Mathematics and Computation, 2016, 275: 50–62
Chen Haibin, Li Guoyin, Qi Liqun, SOS Tensor Decomposition: Theory and Applications. Commun. Math. Sci., 2016, 14(8): 2073–2100
Chen Haibin, Qi Liqun, Spectral properties of odd-bipartite Z-tensors and their absolute tensors. Front. Math. China 2016, 11(3): 539-556
Chen Haibin, Qi Liqun, Positive Definiteness and Semi-definiteness of Even Order Symmetric Cauchy Tensors. J. Ind. Manag. Optim.,2015, 11:1263–1274.
Chen Haibin, Wang Yiju, Hongge Zhao, A Family of higher-order convergent iterative methods for computing the Moore–Penrose inverse. Applied mathematics and computation, 2011, 218(8): 4012-4016
Chen Haibin, Wang Yiju, Finite convergence of a projected proximal point algorithm for the generalized variational inequalities. Operations Research Letters, 2012, 40(4): 303-305
Chen Haibin, A new extra-gradient method for generalized variational inequality in Euclidean space. Fixed Point Theory and Applications, 2013, (2013): 1-11.
Chen Haibin, Wang Yiju, Wang Gang, Strong convergence of extra- gradient method for generalized variational inequalities in Hilbert space. Journal of Inequalities and Applications, 2014, (2014): 1-11.
Chen Haibin, An Improved Two-Step Method for Generalized Variational Inequality. ISRN Mathmatical Analysis, 2013.
Chen Haibin, Liu Yacheng, 一类半线性双温度热传导方程整体强解的存在性. 应用泛函分析学报,2012, 14(1): 95-99.
- 上一篇:肖妹